Brief communication

A note on the Wodzicki residue

Thomas Ackermann ${ }^{1}$
Wasserwerkstr. 37, D-68309 Mannheim, Germany

Received 11 September 1995; revised 21 November 1995

Abstract

In this note we explain the relationship of the Wodzicki residue of (certain powers of) an elliptic differential operator P acting on sections of a complex vector bundle E over a closed compact manifold M and the asymptotic expansion of the trace of the corresponding heat operator $\mathrm{e}^{-t P}$. In the special case of a generalized laplacian Δ and $\operatorname{dim} M>2$, we thereby obtain a simple proof of the fact already shown in [KW], that the Wodzicki residue res $\left(\Delta^{-n / 2+1}\right)$ is the integral of the second coefficient of the heat kernel expansion of $\Delta u p$ to a proportional factor.

Subj. Class.: Non-commutative geometry
1991 MSC: 47F05, 53B50, 58G11
Keywords: Non-commutative residue; Heat kernel expansion

1. Introduction

In [KW] it was shown that the Wodzicki residue res $\left(\Delta^{-n / 2+1}\right)$ of a generalized laplacian Δ on a complex vector bundle E over a closed compact manifold $M, \operatorname{dim} M=n>2$, is the integral of the second coefficient of the heat kerncl expansion of Δ up to a proportional factor. This observation reflects a more general property which we explain in this note, namely, the Wodzicki residue of (certain powers of) an elliptic differential operator P on E can be related with the coefficients in the asymptotic expansion of the trace of the corresponding heat operator $\mathrm{e}^{-t P}$. Although this might be well known to mathematicians working in the field - our simple proof relies on two results made by Wodzicki [W] and Gilkey [Gi] - we think it is worth to restate it because of the growing importance of the Wodzicki residue for non-commutative geometry, for example, to incorporate gravity in the Connes-Lott model (cf. [CFF]). By the way we correct a misprint in [KW].

[^0]2. Computing res $\left(P^{((n-k) / d)}\right)$

Let E be a finite-dimensional complex vector bundle over a closed compact manifold M of dimension n. Recall that the non-commutative residue of a pseudo-differential operator $P \in \Psi \mathrm{DO}(E)$ can be defined by

$$
\begin{equation*}
\operatorname{res}(P):=(2 \pi)^{-n} \int_{S^{*} M} \operatorname{tr}\left(\sigma_{-n}^{P}(x, \xi)\right) \mathrm{d} x \mathrm{~d} \xi \tag{2.1}
\end{equation*}
$$

where $S^{*} M \subset T^{*} M$ denotes the co-sphere bundle on M and σ_{-n}^{P} is the component of order $-n$ of the complete symbol $\sigma^{P}:=\sum_{i} \sigma_{i}^{P}$ of P, cf. [W]. In his thesis, Wodzicki has shown that the linear functional res : $\Psi \mathrm{DO}(E) \rightarrow \mathbb{C}$ is in fact the unique trace (up to multiplication by constants) on the algebra of pseudo-differential operators $\Psi \mathrm{DO}(E)$.

Now let $P \in \Psi \mathrm{DO}(E)$ be elliptic with ord $P=d>0$. It is well known (cf. [Gi]) that its zeta function $\zeta(P, s)$ is a holomorphic function on the half-plane $\operatorname{Re} s>n / d$ which continues analytically to a meromorphic function on \mathbb{C} with simple poles at $\{(n-k) / d \mid k \in$ $\mathbb{N} \backslash\{n\}\}$. For $n-k>0$ with $k \in \mathbb{N}$ we have the following identities:

$$
\begin{align*}
& \operatorname{res}\left(P^{-((n-k) / d)}\right)=d \cdot \operatorname{Res}_{s=(n-k) / d} \zeta(P, s) \tag{2.2}\\
& \operatorname{Res}_{s=(n-k) / d} \zeta(P, s)=a_{k}(P) \cdot \Gamma\left(\frac{n-k}{d}\right)^{-1} \tag{2.3}
\end{align*}
$$

Here Γ is the gamma function and $a_{k}(P)$ denotes the coefficient of $t^{(k-n) / d}$ in the asymptotic expansion of $T r_{L^{2}} \mathrm{e}^{-t P}$. The first equality was shown in [W], whereas (2.3) is a consequence of the Mellin transform which relates the zeta function and the heat equation and was already proven by Gilkey in [Gi]. Consequently we obtain ${ }^{2}$

$$
\begin{equation*}
a_{k}(P)=d^{-1} \cdot \Gamma\left(\frac{n-k}{d}\right) \cdot \operatorname{res}\left(P^{-((n-k) / d)}\right) \tag{2.4}
\end{equation*}
$$

Now suppose $P=\Delta$ is a generalized laplacian and $k=2$. Then $a_{2}(\Delta)=(4 \pi)^{-n / 2} \phi_{2}(\Delta)$ where $\phi_{2}(\Delta)$ denotes the integral over the diagonal part of the second coefficient of the heat kernel expansion of Δ. By using the well-known identity $\Gamma(z+1)=z \Gamma(z)$ it is easily verified that

$$
\begin{equation*}
(n-2) \phi_{2}(\Delta)=(4 \pi)^{n / 2} \cdot \Gamma\left(\frac{n}{2}\right) \cdot \operatorname{res}\left(\Delta^{-n / 2+1}\right) \tag{2.5}
\end{equation*}
$$

for $n>2$. Note, that in the above-mentioned reference [KW] the Wodzicki residue was defined by

$$
\widetilde{\operatorname{res}}(P):=\frac{\Gamma(n / 2)}{2 \pi^{n / 2}} \int_{S^{*} M} \operatorname{tr}\left(\sigma_{-n}^{P}(x, \xi)\right) \mathrm{d} x \mathrm{~d} \xi
$$

[^1]using $\operatorname{vol}\left(S^{n-1}\right)^{-1}=\Gamma(n / 2) / 2 \pi^{n / 2}$ as a normalizing factor. Thus, Eq. (2.5) can be equivalently expressed as $\widetilde{\mathrm{res}}\left(\Delta^{-n / 2+1}\right)=\frac{1}{2}(n-2) \phi_{2}(\Delta)$. The proportionality factor in their equation (4.10) contains therefore a misprint.

We conclude in exploiting the result that we have in hand in the case of a Clifford module $E=\mathcal{E}$ over a four-dimensional closed compact Riemannian manifold M and Δ being the square of a Dirac opertor D defined by a Clifford connection. Then Eq. (2.5) together with the well-known observation $\phi_{2}\left(D^{2}\right) \sim \int_{M} * r_{M}$, where $*$ is the Hodge star corresponding to the Riemannian metric and r_{M} denotes the scalar curvature of M, yields res $\left(D^{-2}\right) \sim \int_{M} * r_{M}$. Thus, by the above derivation of (2.5), the fact - first announced by Connes [C] and shown by Kastler [K] using the symbol calculus - that the non-commutative residue of the inverse square of the Dirac operator is proportional to the Einstein-Hilbert action of general relativity, is almost obvious.

References

[C] A. Connes, Non-commutative geometry and physics, IHES preprint (1993).
[CFF] A.H. Chamseddine, G. Felder and J. Fröhlich, Gravity in non-commutative geometry, Comm. Math. Phys. 155 (1993) 205-217.
[Gi] P.G. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (Publish or Perish, Berkeley, CA, 1984).
[K] D. Kastler, The Dirac operator and gravitation, Comm. Math. Phys. 166 (1995) 633-643.
[KW] W. Kalau and M. Walze, Gravity, non-commutative geometry and the Wodzicki residue, J. Geom. Phys. 16 (1995) 327-344.
[W] M. Wodzicki, Non-commutative residue I, Lecture Notes in Math., Vol. 1289 (Springer, New York, 1987) 320-399.
[Wa] M. Walze, Nicht-kommutative Geometrie und Gravitation, Thesis, Inst. für Theor. Physik, Universität Mainz, to appear.

[^0]: ${ }^{1}$ E-mail: ackerm@euler.math.uni-mannheim.de.

[^1]: ${ }^{2}$ After completion of this work we have been told that the result (2.4) was independently recognized by Walze [Wa].

